Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons.

نویسندگان

  • R J White
  • I J Reynolds
چکیده

Utilizing Indo-1 microfluorimetry, we have investigated the role of mitochondria and Na+/Ca2+ exchange in buffering calcium loads induced by glutamate stimulation or depolarization of cultured rat forebrain neurons. A 15 sec pulse of 3 microM glutamate or 50 mM potassium with veratridine was followed by a 2 min wash with a solution containing either Na(+)-free buffer or the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), or both. For glutamate-induced Ca2+ loads, a Na(+)-free wash delayed recovery to baseline by twofold, mitochondrial uncoupling delayed recovery by greater than fourfold, and the combined treatment essentially prevented recovery of [Ca2+]i for the duration of the wash. Although the depolarization stimulus was able to elicit a larger peak [Ca2+]i, the neurons required significantly less time to recover from depolarization-induced Ca2+ loads after identical wash manipulations, indicating a fundamental difference between calcium loads induced by glutamate as opposed to those induced by depolarization. We show evidence that the delayed recovery is not primarily the result of perturbations in intracellular pH regulation and have also demonstrated that a substantial portion of the delayed recovery is independent of Ca2+ entry during the washout phase. We conclude that glutamate and depolarization both induce Ca2+ loads whose buffering is critically dependent on functional mitochondria and secondarily reliant on Na+/Ca2+ exchange. The two systems overlap and seem to be responsible for buffering most of the glutamate-induced Ca2+ load, because manipulations that compromised both systems completely disabled the neurons' ability to recover [Ca2+]i to baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation of intracellular calcium and hydrogen ion regulation in cultured mouse hippocampal neurons by reduction of the sodium ion concentration gradient.

Na(+)-Ca2+ exchange has been identified as a mechanism for regulation of intracellular Ca ion concentration ([Ca2+]i) in neurons of invertebrates and vertebrates, but for mammalian central neurons its role in restoration of resting [Ca2+]i after transient increases induced by stimulation has been less clear. We have examined the recovery of [Ca2+]i following K+ depolarization and glutamate rece...

متن کامل

Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons.

Prolonged stimulation of cultured cerebellar neurons by kainic acid (KA) leads to death of neurons first evident from the swelling of soma and neurites. Stimulation is accompanied by increases in [Ca2+]i and [Na+]i as monitored using digital imaging microfluorimetry. "Blebs" tended to form on neurites with the highest increases in [Ca2+]i. Points of Ca2+ entry into neurites via glutamate-recept...

متن کامل

Reverse mode Na+/Ca2+ exchangers trigger the release of Ca2+ from intracellular Ca2+ stores in cultured rat embryonic cortical neurons.

The importance of Na+/Ca2+ exchangers in the regulation of the physiological and pathological functions of the nervous system has been widely recognized. In this study, we used primary cultured E14.5 cortical neurons as a model system to study the possible roles of the reverse mode Na+/Ca2+ exchange activity in neurotransmission. Using RT-PCR, several exchanger isoforms, ncx1, ncx3 and nckx2-4 ...

متن کامل

Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes

Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to a...

متن کامل

Increased Na+/Ca2+ Exchanger Activity Promotes Resistance to Excitotoxicity in Cortical Neurons of the Ground Squirrel (a Hibernator)

Ground squirrel, a hibernating mammalian species, is more resistant to ischemic brain stress than rat. Gaining insight into the adaptive mechanisms of ground squirrels may help us design treatment strategies to reduce brain damage in patients suffering ischemic stroke. To understand the anti-stress mechanisms in ground squirrel neurons, we studied glutamate toxicity in primary cultured neurons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 1995